Contact Points and Marginal Gains

While we have just 5 contact points with the bike, each of those contact points are made of whole systems of contact points. And your tires are the ONLY contact points between the bicycle and the earth. Think about it: all the forces, traction, braking, cornering, all have to be transferred through tiny patches of rubber, dynamically moving on the surface of the earth. Clearly, contact points aren’t as obvious as they seem, which makes them a perfect topic for...Marginal Gains!

Got a question you’d like to ask Josh? Text or leave a voicemail at the Marginal Gains Hotline: +1-317-343-4506 or just leave a comment in this post!

Subscribe using your favorite podcast platform (but be sure to rate and review us on Apple Podcasts)


9 comments


  • Eduardo Bueno

    Hello Josh,

    I don’t agree on the argument that a less dissipative bar tape is better for efficiency because it returns more energy. If that energy is returned to the rider and humans are such inefficent “dampers”, wouldn’t we be better off dissipating as much energy as possible in the bar tape and isolating ourselves?

    This is the same as the impedance losses in rolling resistance where we want to absorb all the road irregularities at the tire-road contact level as not let them transmit to the frame/body

    Thanks


  • Josh Poertner

    This is so good Robert!! (as always!)
    J


  • John Dixon

    On stiffness: flex is a loss of kinetic energy, usually as heat. So a stiffer bike will have less loss. But, with rougher surfaces, the stiffer bike will transmit more vibration to the rider, which is wasted energy. So too stiff is bad too. So that is where laterally stiff, vertically compliant is good, and can be engineered with carbon layups. But the tire is the dominant spring in the system.

    On 23c tires. I think they are alive and well with aero wheels (and many clinchers measure 24-25mm anyway). For lighter riders, and smother surfaces, the extra tire width is not always needed, so the aero benefits of narrower tires can be realized. All else the same, wider tires are not more aero, or even just as aero… wider rims just take some of the aero hit off of the wider tires, such that you can minimize aero losses vs a more narrow tire. The wider tire/rim will always have a larger surface area, which hurts aero.

    So the ideal tire width will depend on rider weight, average speed, and the course surface. Wider tires expand the range of effective use of the tire, so for the average rider, this is a good thing. But i do not think they will go away, because there are places of benefit… like high speed tt on smooth surfaces, or for smaller riders.


  • Matt King

    Hi Josh. Thanks for being so friendly and taking time to chat at the Melbourne Handmade Bike Show.

    In addition to what Robert Chung said about smaller rings: the chain tension goes up, and the number of teeth in contact goes down. So your stress at each tooth goes up as an inverse square of the tooth count. Cue more friction and faster wear. In addition to the increased articulation angle, I would guess it’s triply worse, not doubly.

    Given the ever changing world of standards, I’m surprised we are still with 1/2 inch chain; maybe a smaller pitch and increasing the tooth count would reap some benefits. (I recall Shimano unsuccessfully tried 10mm pitch a while back). Thoughts?

    On the Ceramic Speed drivetrain, that thing is awful awful awful. Single point of load through each roller bearing (not shared across many sprocket teeth) – hello massive hysteresis. Roller bearings used as wheels with no housing. Open bearings with no ingress protection. The outside face of the rollers shearing across the chainring and “cassette” (definitely not frictioness rolling). No flex restraint in the cassette. Limited flex resistance in the frame. And no functional shift system. Please don’t ever mention it again.

    OK, here’s some questions:

    Shoes: Does stiffness really matter? Manufacturers would have you believe so, but there is never any supporting data. Given your foot is pushing through a rotating pedal spindle, is there any benefit to stiffness anywhere other than under the ball of the foot?

    Second: Tyres: Are 23s dead? If wheelset budget was limited to say some alloys, they don’t come in wider than 24mm. With a depth around 30-35mm max, would 23s or 25s be faster, or is that road surface dependent?


  • Romney Phillips

    Regarding the 23s I thought aero was best when your tyre width matches the rim width? On my TT bike I have HED S2 wheels and a 23mm GP4000 seems to be the right match for the rim. Would a bulging 25 be worse?


Leave a comment

Please note, comments must be approved before they are published

This site is protected by hCaptcha and the hCaptcha Privacy Policy and Terms of Service apply.